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Abstract
We describe how we manage cognitive information within
our mobile robotics activities. Our approach can be divided
into three parts: the local level through Saphira (the
navigation system), the global state through OAA™ (the
Open Agent Architecture), and the representation and
human-user interaction through multimodal interfaces.

Introduction

In previous work (Konolige and Myers 1998) we discussed
the requirements for autonomous mobile robot operation in
open-ended environments.  These environments were
loosely characterized as dynamic and human-centric, that
is, objects could come and go, and the robots would have
to interact with humans to carry out their tasks.  For an
individual robot, we summarized the most important
capabiliti es as the three C's: coordination, coherence, and
communication.  These constitute a cognitive basis for a
stand alone, autonomous robot.
Coordination: A mobile agent must coordinate its activity.
At the lowest level there are commands for moving
wheels, camera heads, and so on. At the highest level there
are goals to achieve: getting to a destination, keeping track
of location. A complex mapping between these two levels
changes, depending on the local environment. How is the
mapping to be specified? We have found, as have others,
that a layered abstraction approach makes the complexity
manageable.
Coherence: A mobile agent must have a conception of its
environment that is appropriate for its tasks. Our
experience has been that the more open-ended the
environment and the more complex the tasks, the more the
agent will have to understand and represent its
surroundings.  We have found that appropriate, strong
internal representations make the coordination problem
easier, and are indispensable for natural communication.
Our internal model, the Local Perceptual Space (LPS),
uses connected layers of interpretation to support reactivity
and deliberation.
Communication: A mobile agent will be of greater use if it
can interact effectively with other agents. This includes the
abilit y to understand task commands, as well as integrate
advice about the environment or its behavior.
Communication at this level is possible only if the agent
and its respondent internalize similar concepts, for
example, about the spatial directions “ left” and “ right” . We

 have taken only a small step here, by starting to integrate
natural language input and perceptual information. This is
one of the most interesting and diff icult research areas.
Although the above approach has proven useful for single
robotics agents, in recent years our thinking has changed to
a broader view of mobile robots, one in which they are
considered to be a physical part of a larger, distributed
system.  Instead of having all the cognitive functions
necessary for autonomy implemented on a single physical
platform, the functions are distributed, both physically and
conceptually, as a network of agents.  An agent can be
implemented in software and reside on some computer, or
it can be a physical robot with some local sensing and
computational abiliti es, and a wireless connection to the
network.  Each agent has its own capabiliti es, and together
the network of agents constitutes the system.
There are many advantages to this agent-centered design.
One is the abilit y to rapidly reconfigure the system to
respond to a changing environment or changing task mix.
Another is the abilit y to use agent components, with
specialized expertise, that have been developed for other
systems, for example a speech input agent or a map agent.
In this paper we will l ay the broad outlines of this
approach, by first looking at the local cognitive state of a
robot, then the global agent architecture and how physical
robots fit in, and finally some particular aspects of human
interaction with the agent system.

Local cognitive state: Saphira

The Saphira architecture (Saff iotti 1995; Konolige and
Myers 1998) is an integrated sensing and control system
for robotics applications. At the center is the LPS (see
Figure 1), a geometric representation of space around the
robot. Because different tasks demand different
representations, the LPS is designed to accommodate
various levels of interpretation of sensor information, as
well as a priori information from sources such as maps.
For example, there is a grid-based representation similar to
Moravec and Elfes' occupancy grids (Moravec and Elfes
1985) built from the fusion of sensor readings, as well as
more analytic representations of surface features such as
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linear surfaces, which interpret sensor data relative to
models of the environment.

Semantic descriptions of the world use structures such as
corridors or doorways (artifacts).  Artifacts are the product
of bottom-up interpretation of sensor readings, or top-
down refinement of map information.
The LPS gives the robot an awareness of its immediate
environment, and is critical in the tasks of fusing sensor
information, planning local movement, and integrating
map information.  The perceptual and control architecture
makes constant reference to the local perceptual space.
One can think of the internal artifacts as Saphira's beliefs
about the world, and most actions are planned and
executed with respect to these beliefs.
In Brooks' terms (Brooks 1986) the organization is partly
vertical and partly horizontal.  The vertical organization
occurs in both perception (left side) and action (right side).
Various perceptual routines are responsible for both adding
sensor information to the LPS and processing it to produce
surface information that can be used by object recognition
and navigation routines.  On the action side, the lowest-
level behaviors look mostly at occupancy information to
do obstacle avoidance.  The basic building blocks of
behaviors are fuzzy rules, which give the robot the abilit y
to react gracefully to the environment by grading the

strength of the reaction (e.g., turn left) according to the
strength of the stimulus (e.g., distance of an obstacle on the
right).  Navigation routines make use of map information
to guide the robot toward goal locations, for example to a
corridor junction.  At the same time, registration routines
keep track of sensed objects, constantly relating them to
internal map objects to keep the robot accurately
positioned with respect to the map.  Thus, Saphira is able
to accept a plan, a sequence of waypoints to a final goal,
and execute it while keeping the robot localized within the
global map.

Behaviors
At the control level, the Saphira architecture is behavior-
based: the control problem is decomposed into small units
of control called basic behaviors, li ke obstacle avoidance
or corridor following.  One of the distinctive features of
Saphira is that behaviors are written and combined using
techniques based on fuzzy logic. Each behavior consists of
an update function and a set of fuzzy rules.  The purpose of
the update function is to extract information from the LPS
and turn it into a set of fuzzy variables appropriate for the
behavior.  For example, an obstacle-avoidance behavior
might have the following variables, indicating where the
robot's path is blocked:

front-left-blocked
front-right-blocked
side-left-blocked
side-right-blocked

Each fuzzy variable takes a value from the interval [0..1],
indicating the degree to which its condition holds.

Coherence
Reactive behaviors such as obstacle avoidance often can
take their input directly from sensor readings, perhaps with
some transformation and filtering.  More goal-directed
behaviors can often benefit from using artifacts, internal
representations of objects or object configurations.  This is
especially true when sensors give only sporadic and
uncertain information about the environment.  For
example, in following a corridor, a robot will not be able to
sense the corridor with its side sonars when traversing
open doorways or junctions.  It would be foolish to
suspend the behavior at this point, since over a small
distance the robot's dead-reckoning is good enough to
follow a "virtual corridor'' until the opening is passed.
In other situations, an artifact may represent an artificial
geometric entity that guides the behavior.  Such situations
occur frequently in human navigation, for example in
crossing a street one tends to stay within a lane defined by
the sidewalks on either side, even when there is no painted
crosswalk.  Similarly, in the follow-corridor behavior, the
robot is guided by a lane artifact that is positioned a foot or
so in from the corridor walls.

Figure 1  Saphira system architecture. Perceptual
routines are on the left, action routines on the right.
The vertical dimension gives an indication of the
cognitive level of processing, with high-level behaviors
and perceptual routines at the top.  Control is
coordinated by the Procedural Reasoning System (PRS-
lite), which instantiates routines for task sequencing
and monitoring, and perceptual coordination.



In accordance with these behavioral strategies, artifacts in
Saphira come from three sources:
• From a priori information.  Typically, the robot will
start with a map of the corridors and off ices in its
environment.
• From perceptual features.  When a perceptual process
recognizes a new object, it may add that object to the list of
artifacts.
• Indirectly, from other artifacts or goal information.  For
example, if the user gives the command, ``Move 3 feet
forward,'' a goal artifact is created at a position three feet in
front of the robot.

Extracting features
To navigate through extended regions, Saphira uses a
global map that contains imprecise spatial knowledge of
objects in the domain, especially walls, doorways, and
junctions of corridors.  Using a map depends on reliable
extraction of object information from perceptual clues, and
we (as well as others) have spent many frustrating years
trying to produce object interpretations from highly
uncertain sonar and stereo signatures. (Drumheller 1985,
Moravec and Elfes 1985). The best method we have found
is to use extended-aperture sonar readings, perhaps
augmented with depth information from the stereo system.
As our robot Flakey moves along, readings from the side
sonars are accumulated as a series of points representing
possible surfaces on the side of the robot. This gives some
of the resolution of a sensor with a large aperture along the
direction of motion.  By running a robust linear feature
algorithm over the data, we can find wall segments and
doorways with some degree of confidence.

Anchoring
Artifacts exist as internal representations of the
environment.  When the physical object that an artifact
refers to is perceived by the sensors, we can use this
information to update the position of the artifact with
respect to the robot.  This is necessary to guarantee that
behavior using the artifact operates with respect to the
actual object, rather than with respect to an a priori
assumption. We call anchoring the process of (1) matching
a feature or object hypothesis to an artifact, and (2)
updating the artifact by using this perceptual information
(see (Saff ioti et al. 1993) for more on anchoring).
In Saphira, the structure of decision-making for the
anchoring problem takes the following form: As features
are perceived, Saphira attempts to convert them to object
hypotheses, since these are more reliably matched than
individual features.  These hypotheses are matched against
artifacts existing in the LPS.  If they match against an
artifact, the match produces information for updating
(anchoring) the artifact's position.  If not, they are
candidates for inclusion as new artifacts in the map.
If an artifact that is in view of the perceptual apparatus
cannot be matched against an object hypothesis, then
Saphira tries to match it against individual perceptual

features.  This is useful, for example, when the robot is
going down a hallway and trying to turn into a doorway.
Only one end of the doorway is initially found because the
other end is not in view of the side sonars.  This
information is enough to anchor the doorway artifact, and
allow the robot to proceed with the door-traversing
behavior.

Global cognitive state: OAA

To collect and deal with local cognitive pieces of
information coming from robots, we decided to take
advantage of our recent integration of Saphira as an agent
within the Open Agent Architecture (OAA)™. It is a
framework for constructing multiagent systems that has
been used by SRI and clients to construct more than 20
applications in various domains.
The OAA uses a distributed architecture in which a
Facilit ator agent is responsible for scheduling and
maintaining the flow of communication several of client
agents. Agents interact with each other through an
Interagent Communication Language (ICL), a logic-based
declarative language based on an extension of Prolog. The
primary job of the Facilit ator is to decompose ICL
expressions and route them to agents who have indicated a
capabilit y of resolving them. As communication occurs in
an undirected fashion, with agents specifying what
information they need, not how this information is to be
obtained, agents can be replaced or added in a "plug and
play" fashion.
Each agent in the OAA consists of a wrapper encapsulating
a layer written in Prolog, C, Lisp, Java, Visual Basic, or
Borland's Delphi. The knowledge layer, in turn, may lie on
top of existing stand alone applications, and serves to map
the underlying application into the ICL.

Features
Applying OAA to a multi robot system provides the
following advantages:

• Distributed

Agents can run on different platforms and operating
systems, and can cooperate in parallel to achieve a
common task. For instance, some agents can be placed
locally on each robot, while other services can be
offered from more powerful workstations.

• Plug and play

Agent communities can be formed by dynamically adding
new agents at runtime. It is as easy to have multiple
robots executing tasks as it is to have just one.

• Agent services

Many services and technologies encapsulated by
preexisting agents can easily be added, as resources, to
our agents community. Useful agents for the robot
domain would include database agents, map manager
agents, agents for text to speech, speech recognition, and



natural language, all directly reusable from other agent
based applications.

• Mobile

The agent libraries are lightweight enough to allow
multiple agents to run on small , wireless PDAs or
laptops, and communications are fast enough to provide
realtime response for the robot domain.

System design
The system we developed features a set of independent
agents (including robots), able to communicate to perform
cooperative tasks. A human operator can graphically
monitor the whole scene and interactively control the
robots. Figure 2 is a diagram of the complete system.
All i nvolved agents are connected to the facilit ator,
registering their capabiliti es so that other members of the
community can send them requests.  This is the essential
part of this architecture: agents are able to access each
other's capabiliti es in a uniform manner. In the next
paragraphs, we briefly describe the capabiliti es of the
involved agents.

Database
Each robot agent provides information about its cognitive
and physical states.  The information includes

 •Position with respect to the robot’s internal coordinate
system

 •Robot movement status: stopped, moving forward,
turning

 •Currently executing behaviors on the robot

An interesting problem is how two agents maintain a
consistent coordinate system.  Commands that are robot-
relative, such as, “Move forward” , are interpreted with
respect to the robot’s internal coordinate system.  Other

commands, such as “Go to off ice EK288,” must be
interpreted with respect to a common global framework.
The database agent is responsible for maintaining a global
map, and distributing this information to other agents when
appropriate.  Each physical robot has its own copy of the
global map, but these copies need not be exactly alike.  For
example, an individual map may be missing information
about an area the robot has no need to visit.
During movement, each robot keeps track of its global
position through a combination of dead-reckoning (how far
its wheels have moved) and registration with respect to
objects that it senses.  It communicates with the database
agent to update its position about once a second, and to
report any new objects that it finds, so they can be
incorporated into the global database and made available to
other agents.  In this way, the database agent has available
information about all of the robot agents that are currently
operating.

Basic planner
The technology described in this paper was used in the
"Hold a Meeting" event for the AAA I robotic contest
organized in 1996. In this event, a robot starts from the
Director's off ice, determines which of two conference
rooms is empty, notifies two professors where and when
the meeting will be held, and then returns to tell the
Director.  Points are awarded for accomplishing the
different parts of the task, for communicating effectively
about its goals, and for finishing the task quickly.  Our
strategy was simple: use as many robots as we could to cut
down on the time to find the rooms and notify the
professors.  We decided that three robots was an optimal
choice: enough to search for the rooms eff iciently, but not
too many to get in each other's way or strain our resources.
We would have two robots searching for the rooms and
professors, and one remaining behind in the Director's
off ice to tell her when the meeting would be.

For this occasion, we designed a basic planner, the strategy
agent, to control the coordinated movements of the robots,
by keeping track of the total world stated and deciding
what tasks each robot should perform at any given
moment.  While it would be nice to automatically derive
multiagent strategies from a description of the task,
environment, and robots, we have not yet built an adequate
theory for generating eff icient plans.  Instead, we built a
strategy for the event by hand, taking into account the
various contingencies that could arise.  The strategy was
written as a set of coupled finite-state (FS) machines, one
for each robot agent.  Because the two exploring robots
had similar tasks, their FS machines were equivalent.
Figure 3 shows the strategies for these agents.

Note that the FS strategies are executed by the strategy
agent, not the robots. Each node in the FS graph represents
a task that the strategy agent dispatches to a robot, e.g.,
navigating to a particular location.

Figure 2  Organization of physical and software agents
for the AAAI contest.



Cognitive state representation : multimodal
user interface

An interesting problem is to combine human cognitive
knowledge and its cognitive representation within the
system presented. This step is realized by taking advantage
of multimodal interfaces designed as agents, members of
the OAA. For instance, if a robot becomes lost, it can
query the facilit ator to help relocalize.  Currently, this
means human intervention: the facilit ator signals that a
particular robot is lost, and asks for a new position for the
robot.   The state of each robot is displayed by the map
manager agent, or mapper.  All currently known objects in
the database, as well as the positions of all robots, are
constantly updated in a 2-dimensional (2D) window
managed by this agent. Figure 4 shows the mapper’s view
of the database contents.  Corridors, doors, junctions, and
rooms are objects known to the mapper.  A robot’s
position is marked as a circle with an arrow in it, showing
the robot’s orientation.
To correct the position of a lost robot, the user can point to
a position on the map where the robot is currently located,
or simply describe the robot’s position through speech
input.  This integration of multimodal capabiliti es is one of
the most useful features of the OAA architecture.
Currently, the system accepts either voice input or pen
gestures. The interpretation of the gestures depends on
context.  For instance, when the robot is lost, the user can

tell it where it is by drawing a cross (for the location) and
an arrow (to tell the robot where it faces) on the map.
Using 2D gestures in the human-computer interaction
holds promise for recreating the paper-pen situation where
the user is able to quickly express visual ideas while using

another modality such as speech. However, to successfully
attain a high level of human-computer cooperation, the
interpretation of online data must be accurate and fast
enough to give rapid and correct feedback to the user.  The
gesture recognition engine used in our application is fully
described in (Julia and Faure 1995).  There is no constraint
on the number of strokes.  The latest evaluations gave
better than 96% accuracy, and the recognition was
performed in less than half a second on a PC 486/50,
satisfying what we judge is required in terms of quality and
speed (Moran et al. 1996)
Given that our map manager program is an agent, the
speech recognition agent can also be used in the system.
Therefore, the user can talk to the system to control the
robots or the display. For instance, it is possible to say
``Show me the director' s room'' to put the focus on this
specific room, or ``robot one, stop'' , ``robot one, start'' , to
control a given robot.

Using the global knowledge stored in the database, this
application can also generate plans for the robots to
execute.  The program can be asked (by either a user or a
distant agent) to compute the shortest path between two
locations, build the corresponding plan, and send it to the
robot agent.  Plans are locally executed through Saphira in
the robots themselves.  Saphira returns a success or failure
message when it finishes executing the plan, so the
database agent can keep track of the state of all robots.  In
the figure, the plan is indicated by a line drawn from the
robot to the goal point, marked by an “X” .

Extracting wall and doorway features makes it easy to
build a global map automatically, by having a Saphira-
driven robot explore an area. The map is imprecise because
of errors in the dead-reckoning system, and because the
models for spatial objects are linear, for example, corridors
are represented as two parallel, straight lines.  As features
are constructed they can be combined into object
hypotheses, matched against current artifacts, and
promoted to new artifacts when they are not matched.  In
practice, we have been able to reliably construct a map of
the corridors in SRI' s Artificial Intelli gence Center, along
with most of the doorways and junctions.  Some hand
editing of the map is necessary to add in doorways that
were not found (because they were closed, or the robot was
turning and missed them), and also to delete some doorway
artifacts that were recognized because of odd combinations
of obstacles.

Director ’s Off ice Robot
Conf room empty

Traveling Robot

Figure 3 Finite State Strategy Machines for the two
types of robots.



A powerful way of entering spatial knowledge into the
system consists in directly drawing a rough map of the
robot's surroundings, letting the gesture recognition agent
build a structured map of it, and finally storing it in the
global database. The robot's navigation system (Saphira)

will t hen use this information, confront it with real data
coming from sensor inputs, and eventually correct it. This
procedure could also be performed in the fashion of a
feedback loop. The user draws a wall and artifacts, the
robot starts looking for them in the real world and lets the
human know about the real positions of these features, the
user adds new objects to be seen by the robot, and so on.

Future work

Monitor ing of agent activities
Adaptive behavior of agents and agent communities begins
with effective strategies for detecting relevant changes in
the operating environment.  As such, monitoring will be an
essential part of a multi robot framework. Monitoring will
encompass a range of information and event types.
Monitoring of resource usage will enable redirection of
community activities if a critical resource becomes
overloaded.  Monitoring for the availabilit y of new agents
will enable off- loading of critical-path tasks that will
improve overall productivity.  Monitoring of interagent
message traff ic will provide insight into problem-solving
strategies, which can be useful for evaluating strategies and
for communicating to users the `state' of distributed
problem solving.  Finally, monitoring to evaluate progress
through problem solving is critical for ensuring
effectiveness of the overall agent community. Such
monitoring will i nvolve examination of success and failure
in completing assigned tasks, and possibly consideration of
partial solutions and measures of expected success/utilit y
of agent activities. (For example, does it make sense for a
robot to continue a given task if another agent has already
produced an adequate solution for that task?)

User guidance for agent communities
We are interested in using agent technology to service
human requests for information gathering and problem
solving.  For this reason, our framework will i nclude a
significant user guidance component that will enable
humans to direct the overall process by which an agent
community operates and to influence task delegation and
individual robot behaviors.

Organizational structures for agents
The generality and flexibilit y of our framework should
enable robot communities to dynamically reorganize
themselves in response to critical events, to maximize
robustness, resource usage, and eff iciency.  We will define
and experimentally evaluate a range of organizational
structures for agent communities to address issues such as
the following.
Distributed facilitation: Facilit ator agents in current-
generation architectures often present a single point of
failure, as well as a bottleneck for system communication.
These problems can be addressed in two ways.  First, the
task delegation and management capabiliti es of a
conceptually centralized facilit ator can be transparently
distributed among multiple agents, to increase the
reliabilit y and eff iciency of the facilit ation services.
Second, conventions can be established for cooperation
between facilit ators in multi facilit ator topologies
(hierarchical or otherwise).
Communication links: It may be desirable to establish fixed
communication links (such as peer-to-peer) links among
agents that must frequently communicate.
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